
TECHNICAL REPORT v1.0.0 | Not peer-reviewed

Autonomous Red Team AI
LLM-Guided Adversarial Security Testing

Murad Farzulla1 0009-0002-7164-8704

1Farzulla Research

December 2025

Correspondence: murad@farzulla.org

Abstract

This technical report presents a framework for autonomous red team agents using large lan-
guage models (LLMs) for adversarial security testing. We introduce a four-layer architecture
combining LLM-guided decision making, retrieval-augmented generation (RAG) knowledge
bases, containerized security toolkits, and kernel-level network isolation. The system imple-
ments an OODA (Observe, Orient, Decide, Act) loop where agents autonomously query of-
fensive security knowledge bases, formulate attack strategies, execute sandboxed commands,
and adapt based on observed results. Key architectural decisions include agent-orchestrated
rather than LLM-orchestrated control flow (addressing limitations in abliterated models’ struc-
tured output capabilities), NetworkPolicy-based isolation providing provable containment, and
command sandboxing with whitelist/blacklist patterns. We describe a proof-of-concept imple-
mentation achieving autonomous SSH compromise in approximately 90 seconds across 1–3
command iterations. The report discusses the dual-LLM adversarial competition hypothesis—
where separate red team and blue team agents with asymmetric knowledge bases may produce
more realistic security testing than single-model approaches—and outlines safety considera-
tions for responsible deployment.

Keywords: autonomous agents, adversarial AI, red team, security testing, LLM, RAG, Ku-
bernetes

JEL Codes: L86, O32, K42

Publication Metadata

DOI: 10.5281/zenodo.17614726
Version: 1.0.0
Date: December 2025
License: CC-BY-4.0
Status: Technical Report

Research Context

This work forms part of the Adversarial Systems Research program, investigating stability, align-
ment, and friction dynamics in complex systems where competing interests generate structural
conflict. The program treats all domains as adversarial environments where optimal outcomes
require balancing competing interests rather than eliminating conflict.

Murad Farzulla 1 v1.0.0 | December 2025

https://orcid.org/0009-0002-7164-8704
https://farzulla.org
mailto:murad@farzulla.org
https://doi.org/10.5281/zenodo.17614726

farzulla.org Technical Report v1.0.0

Autonomous red team systems represent adversarial dynamics in cybersecurity: offensive
agents attempt to identify vulnerabilities while defensive systems attempt to prevent or detect
intrusion. The framework presented here provides infrastructure for studying these dynamics
computationally, enabling controlled experimentation with autonomous adversarial agents in
isolated environments.

Acknowledgements

The author acknowledges Anthropic for developing Claude, whose assistance with framework
design and documentation substantially accelerated this research. The author thanks the open-
source security community for maintaining GTFOBins, Atomic Red Team, and HackTricks
knowledge bases.

All errors, omissions, and interpretive limitations remain the author’s responsibility.

Methodologies: farzulla.org/methodologies

Murad Farzulla 2 December 2025

https://farzulla.org
https://farzulla.org/methodologies

farzulla.org Technical Report v1.0.0

1 Introduction

Open-source software ecosystems face a funda-
mental scalability challenge: vulnerability dis-
covery cannot keep pace with package publi-
cation. npm hosts over 1.3 million packages,
PyPI over 400,000, and thousands more are
published daily across ecosystems. Manual se-
curity review is insufficient; vulnerabilities re-
main undiscovered for months or years while
attackers maintain timing advantages in zero-
day exploitation.

This paper presents a framework for au-
tonomous security testing using LLM-guided
agents. The core hypothesis is that au-
tonomous adversarial agents with access to
offensive security knowledge bases can iden-
tify vulnerabilities more efficiently than tradi-
tional approaches, potentially enabling proac-
tive rather than reactive security postures.

1.1 Contributions

This report makes the following contributions:

1. A four-layer architecture for autonomous
red team agents combining LLM infer-
ence, RAG knowledge bases, containerized
toolkits, and kernel-level isolation

2. Analysis of agent-orchestrated versus
LLM-orchestrated control patterns, with
empirical evidence for agent-orchestrated
superiority with abliterated models

3. Safety framework combining NetworkPol-
icy isolation, command sandboxing, and
resource constraints

4. Discussion of dual-LLM adversarial com-
petition methodology for realistic security
testing

1.2 Scope and Limitations

This report describes Phase 1 implementa-
tion (red team infrastructure) of a planned
multi-phase research program. The current

framework demonstrates technical feasibility
of autonomous attack execution against in-
tentionally vulnerable targets. Extension to
blue team capabilities, multi-agent coordina-
tion, and real-world vulnerability discovery re-
mains future work.

2 Architecture

The system comprises four layers operating in
a closed loop, illustrated in Figure 1.

2.1 Layer 1: LLM Decision Making

The decision layer provides strategic reason-
ing for attack planning. We use locally-
hosted inference via LM Studio with abliter-
ated (uncensored) models—specifically Qwen
2.5 Coder 14B Instruct—enabling security-
focused queries that standard safety-tuned
models refuse.

Inference parameters are optimized for de-
terministic command generation:

• Temperature: 0.4 (low for consistency)

• Min-P: 0.08 (dynamic sampling)

• Repeat penalty: 1.08 (prevents loops)

• Max tokens: 2048

Min-P sampling adapts dynamically to
model confidence: when the top token has
80% probability, the threshold becomes 6.4%
(0.08 × 0.8); when confidence is low (20%), the
threshold drops to 1.6%. This produces more
reliable command generation than static Top-
P.

2.2 Layer 2: Knowledge Base

The RAG server implements semantic search
over 5,395 offensive security documents using
FAISS indexing with all-MiniLM-L6-v2 em-
beddings (384 dimensions). Document sources
include:

• GTFOBins: Unix binary exploitation
techniques for privilege escalation

Murad Farzulla 3 December 2025

https://farzulla.org

farzulla.org Technical Report v1.0.0

• Atomic Red Team: MITRE ATT&CK-
mapped adversary emulation

• HackTricks: Penetration testing
methodologies

The server exposes MCP (Model Context
Protocol) endpoints for semantic search and
technique listing, achieving sub-100ms query
latency.

2.3 Layer 3: Autonomous Agent

The agent implements an OODA loop:

1. Observe: Query current system state and
prior results

2. Orient: Search knowledge base for rele-
vant techniques

3. Decide: Request attack plan from LLM
with RAG context

4. Act: Execute sandboxed command
against target

The agent runs in a BlackArch Linux con-
tainer with access to 2,000+ security tools.
A command sandbox validates all executions
against a tool whitelist and destructive pattern
blacklist.

2.4 Layer 4: Target System

The target is an intentionally vulnerable sys-
tem with weak credentials, SUID binaries,
and sudo misconfigurations, isolated via Net-
workPolicy to the agent’s egress allowlist.

3 Agent-Orchestrated Control

A key design decision is agent-orchestrated
rather than LLM-orchestrated control flow. In
LLM-orchestrated systems, the model directly
invokes tools via structured function calling
APIs. In agent-orchestrated systems, the agent
controls the loop while the LLM provides text
responses that the agent parses.

3.1 Motivation

We discovered that abliterated models exhibit
degraded performance with structured tool
calling. LM Studio’s function calling API pro-
duced grammar stack errors during JSON gen-
eration:

{"error":"Unexpected empty
grammar stack after accepting
piece: {\""}

This appears related to weight modifications
during the abliteration process affecting con-
strained generation reliability.

3.2 Agent-Orchestrated Pattern

The agent implements explicit control flow:

while not objective_achieved:
knowledge = query_mcp_rag(obj)
plan = llm.generate(

prompt_with_knowledge)
commands = extract_commands(plan)
result = sandbox.execute(

commands[0])
if success(result):

break

Benefits include:

• Compatibility with abliterated models

• Full transparency into prompts and re-
sponses

• Easier debugging and logging

• Flexible command extraction patterns

3.3 Repetition Detection

LLMs can enter repetitive loops, executing the
same failed command repeatedly. The agent
tracks command history and queries RAG for
alternative techniques if the same tool appears
three consecutive times:

Murad Farzulla 4 December 2025

https://farzulla.org

farzulla.org Technical Report v1.0.0

+---+
| Layer 1: LLM Decision Making (LM Studio) |
| - Qwen 2.5 Coder 14B (abliterated) |
| - Temperature 0.4, Min-P 0.08 |
+----------------------------+------------------------------+

|
v

+---+
| Layer 2: Knowledge Base (K3s Cluster) |
| - MCP RAG Server |
| - FAISS index (5,395 documents) |
| - GTFOBins + Atomic Red Team + HackTricks |
+----------------------------+------------------------------+

^
|

+---+
| Layer 3: Autonomous Agent Pod (NetworkPolicy Isolated) |
| - BlackArch toolkit (2000+ tools) |
| - Command sandbox (whitelist + blacklist) |
| - Egress: Target + MCP + LLM + DNS only |
+----------------------------+------------------------------+

|
v

+---+
| Layer 4: Target System |
| - Intentionally vulnerable |
| - SSH (port 22) |
+---+

Figure 1: Four-layer autonomous red team architecture. Arrows indicate data flow during attack
cycle.

if is_repeating(command):
alt = query_rag(

objective + " alternative")
plan = llm.generate(

"Suggest DIFFERENT approach",
context=alt)

Testing showed this reduced stuck loops by
approximately 80%.

4 Safety Framework

Autonomous offensive agents require robust
containment. Our framework implements
defense-in-depth across network, command,
and resource layers.

4.1 NetworkPolicy Isolation

Kubernetes NetworkPolicy provides kernel-
level enforcement of allowed traffic, not

application-level filtering. The agent’s egress
policy permits only:

• Target system (specified IP, port 22)

• MCP RAG server (ClusterIP service)

• LLM inference endpoint (specified IP, port
1234)

• DNS (port 53)

All other traffic—including internet access,
other pods, Kubernetes API, and LAN hosts—
is blocked by implicit deny. This is provably
verifiable via policy inspection.

4.2 Command Sandbox

The sandbox implements multi-layer valida-
tion:

Murad Farzulla 5 December 2025

https://farzulla.org

farzulla.org Technical Report v1.0.0

• Whitelist: 2,000+ BlackArch tools ap-
proved

• Blacklist: Destructive patterns blocked
(e.g., rm -rf /, dd if=.*of=/dev/,
mkfs)

• Logging: All commands recorded with
timestamps

• Timeout: 30-second maximum execution

4.3 Resource Constraints

The agent pod enforces:

• 1 CPU maximum

• 1GB RAM maximum

• Non-root execution (UID 1000)

• Dropped capabilities

• RuntimeDefault seccomp profile

5 Preliminary Results

We present preliminary validation against in-
tentionally vulnerable targets.

5.1 SSH Compromise Scenario

Objective: Gain SSH access using weak cre-
dentials.

Execution:

1. Agent queries RAG: “SSH brute force
weak password”

2. RAG returns Atomic Red Team
T1110.001, HackTricks SSH guides

3. LLM generates hydra command with con-
text

4. Agent extracts and executes: hydra -l
victim -p password123 ssh://target

5. Success detected via exit code and output
pattern

Performance:

• Total time: ∼90 seconds

• Commands executed: 1–3

• Success rate: 100% on vulnerable targets

5.2 Component Latency

Component Latency

MCP RAG query <100ms
LLM inference 5–15s
Command execution Variable

Total iteration 20–60s

Table 1: Component latency (14B model, con-
sumer GPU)

6 Dual-LLM Adversarial Competi-
tion

We hypothesize that dual-LLM adversarial
competition—separate red team and blue team
agents with asymmetric knowledge bases—
may produce more realistic security testing
than single-model approaches.

6.1 Information Asymmetry

Real adversarial dynamics involve information
asymmetry: attackers and defenders have dif-
ferent knowledge, capabilities, and objectives.
Single-agent systems cannot capture this dy-
namic.

Proposed architecture:

• Red agent: Offensive knowledge (GT-
FOBins, ATT&CK, HackTricks)

• Blue agent: Defensive knowledge
(MITRE D3FEND, hardening guides,
patch databases)

• Separate objectives: Compromise vs.
prevent/detect

6.2 Competition Framework

Planned Phase 2 development includes:

• Blue team agent with patch generation ca-
pabilities

Murad Farzulla 6 December 2025

https://farzulla.org

farzulla.org Technical Report v1.0.0

• Competition scoring (time-to-compromise
vs. time-to-detect)

• Stealth metrics (failed attempts, scan
noise)

• Automated patch testing and validation

6.3 Scaling Vision

At enterprise scale, this methodology could en-
able:

• Automated vulnerability discovery in
newly published packages

• Zero-day identification before public ex-
ploitation

• Shift from reactive to proactive security

7 Related Work

7.1 LLM Security Applications

Recent work has explored LLMs for security
tasks. Deng et al. (2023) introduce Pentest-
GPT for interactive penetration testing guid-
ance. Happe and Cito (2023) evaluate GPT-4
on CTF challenges. Our work differs in im-
plementing fully autonomous execution with
closed-loop feedback.

7.2 Autonomous Agents

The AutoGPT paradigm (Significant Gravitas,
2023) demonstrates LLM-driven task automa-
tion. We extend this to security domains with
specialized knowledge bases and safety con-
straints.

7.3 RAG for Security

Retrieval-augmented generation has been ap-
plied to security knowledge bases. Microsoft
(2024) integrate RAG with security operations.
Our contribution is the combination with au-
tonomous execution and formal isolation guar-
antees.

8 Discussion

8.1 Abliterated Models

A critical finding is that abliterated (uncen-
sored) models are necessary for security re-
search but exhibit degraded structured output
performance. The agent-orchestrated pattern
provides a robust workaround, and may actu-
ally be preferable for transparency and debug-
ging.

8.2 Infrastructure Constraints

We encountered unexpected syscall restric-
tions: K3s containerd blocks socketpair(),
breaking async Python frameworks. Flask
with synchronous workers proved more reliable
than FastAPI/Uvicorn in constrained environ-
ments. This suggests that simpler technology
stacks have better compatibility in restricted
execution contexts.

8.3 Ethical Considerations

Autonomous offensive capabilities raise ethi-
cal concerns. Our framework addresses these
through:

• Explicit isolation (NetworkPolicy, sand-
boxing)

• Authorized targets only

• Full audit logging

• Research-focused scope

Responsible deployment requires additional
controls beyond technical measures, including
organizational policies and oversight.

9 Future Work

9.1 Short-Term (3 months)

• Blue team agent development

• Multi-objective chaining (recon → exploit
→ privesc)

• Stealth metrics and detectability analysis

Murad Farzulla 7 December 2025

https://farzulla.org

farzulla.org Technical Report v1.0.0

9.2 Mid-Term (6–12 months)

• Reinforcement learning from suc-
cess/failure

• Multi-agent collaboration

• Custom exploit generation

9.3 Long-Term (12+ months)

• CTF automation

• Real CVE exploitation

• Adversarial training (red trains blue,
GAN-like)

10 Conclusion

This technical report presents a frame-
work for autonomous red team agents us-
ing LLM-guided decision making. The
four-layer architecture—LLM inference, RAG
knowledge base, containerized agent, isolated
target—demonstrates technical feasibility of
autonomous security testing.

Key contributions include the agent-
orchestrated control pattern (necessary for
abliterated model compatibility), compre-
hensive safety framework (NetworkPolicy,
sandboxing, resource limits), and articulation
of the dual-LLM adversarial competition
hypothesis.

The framework achieves autonomous SSH
compromise in approximately 90 seconds
against vulnerable targets, validating the core
approach. Extension to blue team capabili-
ties and multi-agent competition remains fu-
ture work.

Autonomous security testing offers poten-
tial for proactive vulnerability discovery at
scale. Responsible development requires bal-
ancing offensive capability with robust contain-
ment and ethical oversight.

Murad Farzulla 8 December 2025

https://farzulla.org

farzulla.org Technical Report v1.0.0

References

Deng, G., Liu, Y., Mayoral-Vilches, V., Liu, P., Li, Y., Xu, Y., Zhang, T., Liu, Y., Pinzger, M.,
& Rass, S. (2023). PentestGPT: An LLM-empowered Automatic Penetration Testing Tool.
arXiv preprint arXiv:2308.06782.

Happe, A. & Cito, J. (2023). Getting pwn’d by AI: Penetration Testing with Large Language
Models. Proceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2082–2086.

Microsoft Security. (2024). Microsoft Security Copilot. https://www.microsoft.com/en-us/s
ecurity/business/ai-machine-learning/microsoft-security-copilot

Significant Gravitas. (2023). AutoGPT: An Autonomous GPT-4 Experiment. https://github
.com/Significant-Gravitas/AutoGPT

MITRE. (2024). MITRE ATT&CK Framework. https://attack.mitre.org/

GTFOBins. (2024). GTFOBins: Unix Binaries That Can Be Used to Bypass Local Security
Restrictions. https://gtfobins.github.io/

Red Canary. (2024). Atomic Red Team: Small, Highly Portable Detection Tests. https://gi
thub.com/redcanaryco/atomic-red-team

Polop, C. (2024). HackTricks: The Hacking Wiki. https://book.hacktricks.xyz/

Arditi, A., Obeso, O., Shlegeris, B., & Nanda, N. (2024). Refusal in Language Models Is Medi-
ated by a Single Direction. arXiv preprint arXiv:2406.11717.

Bartowski. (2024). Qwen2.5-Coder-14B-Instruct-abliterated-GGUF. Hugging Face. https://hu
ggingface.co/bartowski/Qwen2.5-Coder-14B-Instruct-abliterated-GGUF

Murad Farzulla 9 December 2025

https://farzulla.org
https://www.microsoft.com/en-us/security/business/ai-machine-learning/microsoft-security-copilot
https://www.microsoft.com/en-us/security/business/ai-machine-learning/microsoft-security-copilot
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
https://attack.mitre.org/
https://gtfobins.github.io/
https://github.com/redcanaryco/atomic-red-team
https://github.com/redcanaryco/atomic-red-team
https://book.hacktricks.xyz/
https://huggingface.co/bartowski/Qwen2.5-Coder-14B-Instruct-abliterated-GGUF
https://huggingface.co/bartowski/Qwen2.5-Coder-14B-Instruct-abliterated-GGUF

	Introduction
	Contributions
	Scope and Limitations

	Architecture
	Layer 1: LLM Decision Making
	Layer 2: Knowledge Base
	Layer 3: Autonomous Agent
	Layer 4: Target System

	Agent-Orchestrated Control
	Motivation
	Agent-Orchestrated Pattern
	Repetition Detection

	Safety Framework
	NetworkPolicy Isolation
	Command Sandbox
	Resource Constraints

	Preliminary Results
	SSH Compromise Scenario
	Component Latency

	Dual-LLM Adversarial Competition
	Information Asymmetry
	Competition Framework
	Scaling Vision

	Related Work
	LLM Security Applications
	Autonomous Agents
	RAG for Security

	Discussion
	Abliterated Models
	Infrastructure Constraints
	Ethical Considerations

	Future Work
	Short-Term (3 months)
	Mid-Term (6–12 months)
	Long-Term (12+ months)

	Conclusion

