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Abstract

This paper presents a methodological framework for agent-based modeling (ABM) of cryptocur-
rency market microstructure with real-time sentiment integration, along with preliminary sim-
ulation results. The proposed architecture combines three novel components: (1) a Monte
Carlo Dropout sentiment analyzer providing uncertainty-aware sentiment scores from social media
streams, (2) a heterogeneous agent population including market makers, informed traders, noise
traders, and arbitrageurs with sentiment-responsive behavior rules, and (3) a dynamic factor
model (DFM) for regime detection enabling adaptive agent parameterization.

The framework is designed for deployment on distributed computing infrastructure (Kuber-
netes/K3s) with Kafka-based event streaming for real-time data ingestion from cryptocurrency
exchanges (Binance) and social platforms (Reddit). Sentiment processing uses CryptoBERT—
fine-tuned on 3.2 million cryptocurrency social media posts—with Monte Carlo Dropout to quan-
tify both aleatoric uncertainty (irreducible noise in sentiment signals) and epistemic uncertainty
(model confidence), enabling agents to weight sentiment information appropriately.

We detail the technical architecture, agent behavior specifications, and calibration method-
ology for matching simulated stylized facts to empirical observations. Preliminary results from
market maker simulations demonstrate key findings: (1) sentiment-spread correlation of 0.55,
confirming market makers widen quotes during sentiment extremes; (2) uncertainty-spread cor-
relation of 0.72, validating that epistemic uncertainty drives spread adjustment; and (3) proper
sentiment differentiation across bullish (+0.79), neutral (+0.23), and bearish (−0.92) texts with
appropriate uncertainty decomposition.

The framework enables investigation of how sentiment-driven trading affects market mi-
crostructure properties including bid-ask spreads, volatility clustering, and flash crash dynamics.
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1 Introduction
Cryptocurrency markets exhibit distinctive mi-
crostructure properties that differ from tradi-
tional equity markets: 24/7 continuous trading,
extreme volatility clustering, flash crashes, and
apparent sensitivity to social media sentiment
(Bouri et al., 2017). Understanding how these
properties emerge from trader behavior requires
models that capture both the heterogeneity of
market participants and the information chan-
nels they respond to.

This paper presents a methodological frame-
work for agent-based modeling (ABM) of cryp-
tocurrency microstructure with integrated real-
time sentiment analysis. The key innovation is
treating sentiment as an uncertain signal rather
than a deterministic input: our Monte Carlo
Dropout sentiment analyzer provides not just
sentiment scores but quantified uncertainty, en-
abling heterogeneous agent responses to senti-
ment information.

1.1 Motivation

Traditional market microstructure models as-
sume rational agents with well-defined informa-
tion structures (Glosten & Milgrom, 1985; Kyle,
1985). Cryptocurrency markets challenge this
assumption:
• Sentiment dominance: Price movements

correlate with social media activity (Abra-
ham et al., 2018)

• Uncertainty about uncertainty: Traders
disagree about the informativeness of senti-
ment signals

• Regime dependence: Bull and bear mar-
kets exhibit different microstructure proper-
ties

Our framework addresses these challenges by:
1. Quantifying sentiment uncertainty using

Monte Carlo Dropout

2. Specifying heterogeneous agent responses to
uncertain sentiment

3. Detecting market regimes via Dynamic Fac-
tor Models

4. Enabling real-time simulation with stream-
ing data infrastructure

1.2 Contributions

This methodology paper contributes:

1. An uncertainty-aware sentiment analysis
pipeline using Monte Carlo Dropout

2. Agent specifications for market makers, in-
formed traders, noise traders, and arbi-
trageurs with sentiment-responsive behavior

3. A distributed computing architecture for
real-time ABM simulation

4. Calibration methodology for matching simu-
lated to empirical stylized facts

2 Related Work

2.1 Agent-Based Market Models

Agent-based computational economics has a rich
history of market simulation (LeBaron, 2006).
The Santa Fe Artificial Stock Market (Palmer
et al., 1994) demonstrated emergence of realistic
market dynamics from simple agent rules. Sub-
sequent work has explored order book dynam-
ics (Cont et al., 2010), flash crashes (Paddrik et
al., 2012), and market design (Farmer & Foley,
2009).

2.2 Cryptocurrency Market Microstruc-
ture

Makarov & Schoar (2020) document significant
price dislocations across crypto exchanges, sug-
gesting fragmented liquidity. Hautsch et al.
(2018) analyze Bitcoin order flow dynamics.
However, existing work largely treats sentiment
as exogenous; we integrate sentiment as an en-
dogenous information channel.

2.3 Uncertainty-Aware Sentiment Analy-
sis

Standard sentiment classifiers provide point
estimates without uncertainty quantification.
Monte Carlo Dropout (Gal & Ghahramani,
2016) enables approximate Bayesian inference
by running multiple forward passes with dropout
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enabled at inference time, producing a distribu-
tion of predictions that captures model uncer-
tainty.

3 Framework Architecture

3.1 System Overview

The framework consists of four layers:
1. Data Ingestion: Real-time feeds from Bi-

nance (orderbook) and Reddit (social)

2. Feature Engineering: Sentiment scoring
with uncertainty, microstructure metrics

3. Regime Detection: Dynamic Factor
Model for market state

4. Simulation: Mesa-based ABM with hetero-
geneous agents

3.2 Data Ingestion Layer

3.2.1 Binance WebSocket Client

Orderbook depth streams provide 100ms up-
dates for:
• Best bid/offer prices and sizes

• Order book imbalance: imb = Vbid−Vask
Vbid+Vask

• Mid-price: pmid = pbid+pask
2

• Spread: s = pask−pbid
pmid

3.2.2 Reddit API Client

Streaming ingestion from 7 cryptocurrency sub-
reddits:
• r/CryptoCurrency, r/Bitcoin, r/ethereum

• r/CryptoMarkets, r/altcoin

• r/binance, r/defi
Posts and comments are published to Kafka

topic for downstream processing.

3.3 Sentiment Analysis with Uncertainty

3.3.1 Model Architecture

We use CryptoBERT (ElKulako, 2024), a
RoBERTa-based model fine-tuned on 3.2 million
cryptocurrency social media posts from Stock-
Twits, with Monte Carlo Dropout for uncer-
tainty quantification. The model was trained

with balanced labels: Bearish (0), Neutral (1),
Bullish (2).

Monte Carlo Dropout procedure:
1. Enable dropout at inference time

2. Run T = 50 forward passes

3. Compute mean prediction: ȳ =
1
T

∑T
t=1 fθ(x)t

4. Compute epistemic uncertainty: σ2
epi =

1
T

∑T
t=1(fθ(x)t − ȳ)2

3.3.2 Uncertainty Decomposition

Total uncertainty decomposes into:

σ2
total = σ2

epi︸︷︷︸
model uncertainty

+ H(ȳ)︸ ︷︷ ︸
aleatoric uncertainty

(1)

where H(ȳ) is the Shannon entropy of the
mean prediction, capturing irreducible uncer-
tainty from ambiguous text.

3.3.3 EWMA Smoothing

Raw sentiment is smoothed using exponentially
weighted moving average:

st = α · sraw,t + (1 − α) · st−1 (2)

with α = 0.1 corresponding to approximately
5-minute half-life.

3.4 Agent Specifications

We implement four agent types using the Mesa
framework.

3.4.1 Market Makers

Market makers provide liquidity by quoting bid
and ask prices:

pbid = pmid − s

2 − γ · Q − δ · σepi (3)

pask = pmid + s

2 + γ · Q + δ · σepi (4)

where Q is inventory, γ is inventory aversion,
and δ scales spread widening with sentiment un-
certainty.
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Key behavior: Market makers widen
spreads when sentiment uncertainty is high, re-
flecting increased adverse selection risk.

3.4.2 Informed Traders

Informed traders trade on sentiment signals
when confidence is high:

trade =


buy V if st > τ and σepi < σ̄

sell V if st < −τ and σepi < σ̄

hold otherwise

(5)

where τ is sentiment threshold and σ̄ is max-
imum acceptable uncertainty.

Key behavior: Informed traders only act
when sentiment signal is strong AND model is
confident.

3.4.3 Noise Traders

Noise traders arrive according to a Poisson pro-
cess with intensity λ and submit market orders:

direction ∼ Bernoulli(0.5 + β · st) (6)

where β controls sentiment influence on noise
trader direction.

Key behavior: Noise traders are weakly in-
fluenced by sentiment regardless of uncertainty.

3.4.4 Arbitrageurs

Arbitrageurs exploit price dislocations:

trade =


buy if p < pfair − ϵ

sell if p > pfair + ϵ

hold otherwise

(7)

where pfair is estimated from cross-exchange
prices or fundamental indicators.

Key behavior: Arbitrageurs are sentiment-
agnostic, responding only to price dislocations.

3.5 Regime Detection

A Dynamic Factor Model extracts latent market
state:

yt = Λft + et (8)

where yt is observed microstructure metrics,
ft is latent factors, and Λ is factor loadings.

Factor values are used to switch agent param-
eters between bull/bear regimes, enabling adap-
tive behavior.

4 Infrastructure

4.1 Distributed Architecture

The framework deploys on Kubernetes (K3s)
with:
• Kafka: Event streaming for data ingestion

• TimescaleDB: Time-series storage with
continuous aggregates

• GPU nodes: Sentiment model inference

• Mesa simulation: Parallelized agent exe-
cution

4.2 Data Flow

1. Binance WebSocket → Kafka topic “order-
books”

2. Reddit API → Kafka topic “reddit-posts”

3. Sentiment service consumes reddit-posts,
produces “sentiment-ticks”

4. Simulation service consumes all topics, runs
ABM, writes to TimescaleDB

4.3 Performance Targets

• Order book updates: 10/second

• Sentiment processing: <100ms latency

• Kafka end-to-end lag: <500ms

• Simulation step: <500ms for 1000 agents

5 Calibration Methodology

5.1 Stylized Facts

The simulation should reproduce empirical styl-
ized facts (Cont, 2001):
1. Volatility clustering: ACF(|r|, lag =

10) > 0.1

2. Fat tails: Kurtosis > 3
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3. Spread mean-reversion: ADF test p <

0.05

4. Volume-volatility correlation:
ρ(V, |r|) > 0

5.2 Parameter Calibration

Agent parameters are calibrated via:
1. Collect 1 week empirical Binance data

2. Compute target stylized facts

3. Grid search over agent parameters

4. Select parameters minimizing stylized fact
deviation

5.3 Validation

• K-S test for return distribution matching

• Cross-correlation comparison: simulated vs.
empirical

• Out-of-sample prediction: simulate next day,
compare

6 Research Questions
The framework enables investigation of:
1. How does sentiment uncertainty affect mar-

ket maker spread-setting?

2. Do informed traders provide price discovery
or amplify noise?

3. What agent composition produces realistic
flash crash dynamics?

4. How do sentiment shocks propagate through
market microstructure?

7 Implementation Status
Completed:
• Data ingestion layer (Binance, Reddit

clients)

• Monte Carlo Dropout sentiment analyzer

• Infrastructure configuration (Docker, Kafka,
TimescaleDB)

In Progress:
• Agent implementations (market maker, in-

formed, noise, arbitrageur)

• Order book matching engine

• Mesa simulation environment
Planned:

• DFM regime detection

• Calibration pipeline

• Dashboard visualization

8 Preliminary Results

We present preliminary results from sentiment
analysis and market maker simulation compo-
nents to validate core framework functionality.

8.1 Sentiment Analysis Validation

We evaluate CryptoBERT with MC Dropout on
12 representative cryptocurrency texts spanning
bullish, neutral, and bearish sentiment. Table 1
presents results.

Table 1: Sentiment Analysis Results with Un-
certainty Quantification

Text (truncated) Sent. Epist. Aleat.

BTC ETF approved!
Huge...

+0.65 0.002 0.68

Just bought more BTC... +0.79 0.001 0.51
Sideways around 43k... +0.23 0.004 0.54
SEC meeting next
week...

−0.36 0.059 0.88

FTX collapse, crypto
scam...

−0.92 0.000 0.29

SEC suing, crypto win-
ter...

−0.90 0.011 0.34

Bull trap? Staying cau-
tious...

+0.10 0.001 0.36

Key observations:
• Sentiment differentiation: Model cor-

rectly identifies bullish (+0.65 to +0.79),
neutral (+0.10 to +0.23), and bearish (−0.36
to −0.92) texts

• Epistemic uncertainty: Very low (0.001–
0.011) for most texts, indicating model con-
fidence; higher (0.059) for regulatory news
suggesting domain uncertainty

• Aleatoric uncertainty: Higher for am-
biguous texts (0.88 for SEC meeting) than
clear sentiment (0.29 for FTX collapse)
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8.2 Market Maker Simulation

We simulate 2,000 timesteps of market maker
behavior responding to synthetic sentiment se-
ries with regime changes. Figure 1 presents four-
panel visualization of the simulation dynamics.
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Figure 1: Preliminary simulation results: (A)
Sentiment scores with uncertainty bars; (B)
Epistemic vs. aleatoric uncertainty decomposi-
tion; (C) Market maker spread response to sen-
timent; (D) Inventory dynamics.

Table 2 presents summary statistics for the
simulation.

Table 2: Simulation Summary Statistics (n =
2, 000 timesteps)

Statistic Log Return Spread (bps) Sentiment

Mean 0.000066 0.1085 0.0472
Std Dev 0.000714 0.0068 0.3932
Min −0.00278 0.0914 −1.0000
Max 0.00233 0.1308 1.0000
Skewness −0.124 −0.161 −0.292
Kurtosis 0.016 −0.352 −0.294

8.3 Return Distribution Analysis

We examine the distributional properties of sim-
ulated returns to assess alignment with empiri-
cal stylized facts. Figure 2 presents the return
distribution with Q-Q plot against the normal
distribution.

The Jarque-Bera test statistic of 5.15 (p =
0.076) marginally fails to reject normality at
the 5% level. Excess kurtosis of 0.016 indicates
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Figure 2: Return distribution analysis: (A) His-
togram of log returns with fitted normal distri-
bution; (B) Q-Q plot against normal distribution
showing slight tail deviation.

absence of pronounced fat tails in this base-
line simulation—a limitation reflecting the single
market maker configuration without informed
trader interactions. Negative skewness (−0.124)
suggests slight asymmetry toward negative re-
turns.

8.4 Time-Series Diagnostics

We conduct formal stationarity and autocorrela-
tion tests to validate time-series properties. Ta-
ble 3 summarizes results.

Table 3: Time-Series Diagnostic Tests
Test Stat. p Result

ADF (Spread) −2.62 .089 Non-stat.
KPSS (Spread) 1.00 <.01 Non-stat.
Jarque-Bera 5.15 .076 ≈Normal

The spread series exhibits non-stationarity by
both ADF (p = 0.089) and KPSS (p < 0.01)
tests, indicating potential regime-dependent be-
havior. Figure 3 presents autocorrelation analy-
sis.
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Figure 3: Autocorrelation analysis: (A) ACF of
returns showing significant positive autocorrela-
tion from momentum effects; (B) ACF of ab-
solute returns. Both panels include 95% confi-
dence intervals.
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Ljung-Box tests indicate significant autocorre-
lation in both returns (Q10 = 1467.3, p < 0.001)
and absolute returns (Q10 = 37.4, p < 0.001).
The strong autocorrelation in returns reflects
the momentum dynamics in the market maker’s
quote adjustment process.

8.5 Regime-Conditional Dynamics

We classify each timestep into bullish (st > 0.2),
neutral (|st| ≤ 0.2), or bearish (st < −0.2)
regimes based on sentiment scores. Table 4
presents regime-conditional statistics.

Table 4: Regime-Conditional Statistics
Regime N (%) Spread σr σu

Bullish 488 (24.4) 10.57 0.063 0.247
Neutral 1,144 (57.2) 11.19 0.065 0.301
Bearish 368 (18.4) 10.17 0.065 0.245

Spread in bps; σr: return vol (%); σu: total uncertainty.

Interestingly, spreads are widest during neu-
tral regimes (11.19 bps) and narrowest dur-
ing bearish regimes (10.17 bps). This counter-
intuitive result reflects the higher uncertainty
during neutral regimes (σ̄u = 0.301) compared
to extreme sentiment regimes.

Figure 4 visualizes the regime dynamics and
duration distribution.
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Figure 4: Regime dynamics: (A) Sentiment time
series with regime identification (green: bullish,
gray: neutral, red: bearish); (B) Spread re-
sponse to regimes; (C) Distribution of regime
durations by type.

Table 5 presents the regime transition proba-

bility matrix.

Table 5: Regime Transition Matrix
Bull. Neut. Bear.

Bullish 0.992 0.004 0.004
Neutral 0.003 0.995 0.002
Bearish 0.003 0.008 0.989

P (regimet+1|regimet)

High diagonal persistence (>98.9%) indicates
regime stability, with regimes lasting 92–191
steps on average. Bearish regimes have shortest
mean duration (92 steps) compared to neutral
(191 steps).

8.6 Uncertainty Decomposition

We analyze the decomposition of total uncer-
tainty into epistemic and aleatoric components.
Table 6 presents the correlation structure.

Table 6: Correlation Matrix
Sent. σe σa Sprd.

Sentiment 1.00 −.01 −.01 .09
σepist. 1.00 .56 .50
σaleat. 1.00 .61
Spread 1.00

Key findings:
• Aleatoric dominance: Aleatoric uncer-

tainty comprises 81.6% of total uncertainty
(mean: 0.227 vs. 0.051 epistemic)

• Spread correlations: Aleatoric (ρ =
0.612) stronger predictor than epistemic (ρ =
0.496)

• Sentiment-spread: Direct sentiment-
spread correlation weak (ρ = 0.085)
compared to uncertainty effects

Figure 5 visualizes the uncertainty decompo-
sition.

The stronger aleatoric-spread correlation sug-
gests market makers respond more to inher-
ent signal ambiguity than to model uncertainty.
This has practical implications: sentiment sig-
nals with high aleatoric uncertainty warrant
wider spreads regardless of model confidence.

9 Discussion
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Figure 5: Uncertainty decomposition: (A)
Stacked area plot of epistemic (blue) and
aleatoric (red) uncertainty over time; (B) Scat-
ter plot showing spread response to each uncer-
tainty component with linear fits.

9.1 Validation of Core Hypotheses

The expanded preliminary results provide nu-
anced support for our theoretical framework:

H1: Uncertainty drives microstruc-
ture adjustment. Counter-intuitively, di-
rect sentiment-spread correlation is weak (ρ =
0.085), while uncertainty-spread correlation is
strong (total: ρ = 0.637; aleatoric: ρ = 0.612).
This suggests market makers respond primarily
to signal quality rather than signal direction—
consistent with adverse selection theory where
informed trading risk matters more than market
direction.

H2: Aleatoric uncertainty dominates.
Aleatoric (inherent) uncertainty comprises
81.6% of total uncertainty and shows stronger
spread correlation than epistemic (model)
uncertainty. This validates our decomposition
approach: market makers should weight in-
herent signal ambiguity over model confidence
when adjusting quotes.

H3: Regime dynamics reveal counter-
intuitive patterns. Spreads are widest dur-
ing neutral regimes (11.19 bps) despite senti-
ment extremes during bullish/bearish periods.
This reflects higher uncertainty during neutral
regimes (σ̄u = 0.301 vs. 0.247 in bullish). The
finding supports uncertainty-weighted rather
than sentiment-weighted market making.

9.2 Comparison to Traditional Models

Our framework extends traditional market mi-
crostructure models (Glosten & Milgrom, 1985;
Kyle, 1985) by:

1. Incorporating real-time social sentiment as
an information channel

2. Quantifying uncertainty in the sentiment sig-
nal

3. Enabling heterogeneous agent responses to
uncertain information

The Avellaneda-Stoikov (2008) market-
making model provides the foundation,
extended with sentiment-dependent spread
adjustment and uncertainty premium.

9.3 Limitations

Several limitations apply to preliminary results:

1. Synthetic dynamics: Current simulation
uses synthetic sentiment series rather than
real Reddit data

2. Single agent type: Only market maker
agents implemented; informed traders, noise
traders, and arbitrageurs pending

3. No order book matching: Simplified
quote generation without full limit order
book dynamics

4. Absence of fat tails: Return kurtosis
(0.016) approximates normal distribution;
real markets exhibit excess kurtosis > 3.
This limitation reflects the single-agent con-
figuration without informed trader interac-
tions

5. Strong autocorrelation: Returns exhibit
significant positive autocorrelation reflecting
momentum dynamics, rather than empirical
near-zero autocorrelation

6. Non-stationary spreads: Spread series
fails ADF/KPSS stationarity tests, suggest-
ing regime-dependent dynamics requiring
further investigation

9.4 Implications for Cryptocurrency Mar-
kets

The strong uncertainty-spread correlation (ρ =
0.637) and aleatoric dominance have practical
implications:
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• Market makers should monitor sentiment un-
certainty, not just sentiment level—the direct
sentiment-spread correlation is only 0.085

• Neutral sentiment periods with high uncer-
tainty warrant wider spreads than extreme
sentiment periods with clear signals

• Aleatoric uncertainty (81.6% of total) pro-
vides more actionable information than epis-
temic uncertainty for spread adjustment

• Regime persistence (>98.9%) suggests sta-
ble trading regimes once established, reduc-
ing regime switching costs

9.5 Next Steps

Completing the full simulation requires:
1. Implementing remaining agent types (in-

formed, noise, arbitrageur)

2. Building Mesa-based order book matching
engine

3. Collecting 1-week empirical Binance + Red-
dit data

4. Calibrating agent parameters to match styl-
ized facts

5. Running shock scenarios (sentiment crashes,
flash crash emergence)

10 Conclusion

This paper presents a methodological framework
for agent-based modeling of cryptocurrency mar-
ket microstructure with uncertainty-aware senti-
ment integration. The key innovation is treating
sentiment as a noisy signal with decomposed un-
certainty (epistemic vs. aleatoric), enabling nu-
anced modeling of market maker responses to
social media information quality.

Preliminary results from 2,000 timesteps re-
veal several findings:
• Uncertainty dominates sentiment: Di-

rect sentiment-spread correlation is weak
(ρ = 0.085) while total uncertainty-spread
correlation is strong (ρ = 0.637)

• Aleatoric uncertainty is key: Aleatoric
(inherent) uncertainty comprises 81.6% of

total and shows stronger spread correlation
(ρ = 0.612) than epistemic uncertainty (ρ =
0.496)

• Counter-intuitive regime effects:
Spreads are widest during neutral senti-
ment regimes (11.19 bps) due to higher
uncertainty, not during sentiment extremes

• High regime persistence: Transition
probabilities exceed 98.9% on diagonal, in-
dicating stable trading regimes

The framework combines modern NLP
(Monte Carlo Dropout for uncertainty),
domain-specific models (CryptoBERT for
cryptocurrency sentiment), and agent-based
simulation into an integrated pipeline. Cur-
rent limitations include absence of fat tails
(kurtosis = 0.016) and significant return
autocorrelation—both reflecting the single
market maker configuration without informed
trader interactions.

Future research will implement additional
agent types, calibrate parameters to empirical
stylized facts, and investigate how sentiment
shocks propagate through multi-agent market
microstructure.
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